- Почему корабль не тонет? Простое объяснение непростого вопроса
- Почему корабль не тонет? Физика в кораблестроении
- Почему корабль не тонет? Инженерная часть
- Правила морехода
- Управление судном
- Почему не тонут корабли?
- Архимед — первый моряк
- Почему плывут корабли?
- Почему корабли не тонут? Описание, фото и видео
- Кораблю помогают не тонуть законы физики
- Инженерные решения-остойчивость корабля
- Обязательные правила морехода
- Почему корабли не тонут – интересное видео
- Почему корабль не тонет при шторме
- ПОЧЕМУ НЕ ТОНУТ КОРАБЛИ?
Почему корабль не тонет? Простое объяснение непростого вопроса
В настоящее время кораблестроение хорошо развито. Громадные стальные и железные суда бороздят просторы океана. Однако у многих возникает вопрос: почему корабль не тонет? Ведь его масса огромна, и он должен утонуть сразу же, как только окажется на воде.
Почему корабль не тонет? Физика в кораблестроении
Для того чтобы объяснить такое интересное явление, необходимо обратиться к закону великого ученого Архимеда. Закон звучит следующим образом: жидкость выталкивает любые тела с такой силой, которая равняется весу жидкости в объеме погруженной в нее части тела. Если говорить более простыми словами, то звучит это примерно так: чем больше площадь корабля, тем тяжелее он может быть и при этом не утонуть. А значит, большая площадь позволяет использовать такие тяжелые материалы, как сталь или железобетон, которыми и пользовались США для кораблестроения в начале 20-го века.
К тому же большая площадь дает возможность нагружать судно грузом. Плавучесть корабля поддерживается объемом воздуха, который заключен в объем всего судна. Стоит отметить, что воздух в 825 раз легче, чем вода. Это же и является ответом на вопрос, почему корабль не тонет. Ведь именно из-за образования так называемой воздушной подушки и при использовании закона Архимеда удается строить стальные судна, которые не уходят под воду.
Почему корабль не тонет? Инженерная часть
Кроме закона Архимеда и принципа воздушной подушки, инженеры кораблестроения используют еще кое-что. Это называется принцип рычага. Он обеспечивает плавучесть судна, а также его способностью сопротивляться ветру и волнам. Проектирование корабля можно рассмотреть на обычном тазике, плавающем в ванной. Если оставить предмет в небольшом объеме воды, то плавать он будет постоянно, а вот если перенести его в речку и пустить по воде, то через определенный период тазик наполнится жидкостью из-за ветра и волн и, естественно, утонет.
Этот же принцип сработает и на громадном стальном корабле, если он будет характеризоваться малой остойчивостью. Ею называют способность корабля сохранять устойчивую позицию на воде. Зависимость этого показателя происходит от того места, в котором расположен центр тяжести судна. Чем выше поднимается этот центр, тем легче будет ветру и волнам перевернуть судно.
Это говорит о том, что остойчивость малая. Именно по этой причине все современные судна строятся с расчетом на то, что все тяжелые части вроде ходовых двигателей и т. д. располагаются в нижней части судна. Строительство кораблей также проходит с небольшим нюансом. Чтобы увеличить остойчивость и уменьшить риск потопления судна, конструкторы оборудуют дно корабля специальными свинцовыми накладками, которые исполняют роль утяжелителей.
Правила морехода
В настоящее время довольно распространенно использование компьютерных программ при погрузке продукции на судно. Программа берет на себя расчеты размещения груза. Основное правило, которому следует компьютер, — это сохранение плавучих качеств корабля. То есть погрузка должна осуществляться равномерно, чтобы не перегрузить один из бортов, что сместит центр тяжести и потопит судно.
На корабле есть ответственный за погрузку человек. Чаще всего это старший помощник капитана. Распределение веса на судне должно идти таким образом, чтобы наиболее тяжелые грузы размещались в трюме, а более легкие — на палубе корабля. Еще одним из важнейших правил является закрытие отсеков во время пробития борта корабля. При нормальном состоянии каждый из отсеков открыт, однако в случае пробоя, отделение герметизируется закрытием двери. Проектирование корабля осуществляется таким образом, чтобы не создавать слишком большие отсеки, а разбивать все пространство на несколько мелких.
Управление судном
Если более полно отвечать на вопрос, почему корабль не тонет, то стоит отметить, что важным фактором является и профессиональное управление судном. Одно из основных правил управления им заключается в том, что нельзя поворачивать судно «лагом к волне». Это правило касается экстренных ситуаций, к примеру попадания в шторм. Лаг — это бок. Другими словами, нельзя разворачивать корабль боком, иначе вероятность того, что сильная волна его опрокинет, очень велика. Важно понимать, что единственное, что удерживает судно на воде, — это остойчивость и плавучесть, а потому все правила управления, погрузки и т. д. выполнять строго обязательно.
Источник
Почему не тонут корабли?
Когда мы прыгаем в бассейн, мы опускаемся на дно, как камень, брошенный в воду. Но гигантские корабли — балкеры и авианосцы — плавают на поверхности воды. Как это возможно? Почему не тонут корабли?
Большие корабли — такие, как «Петр Великий» (самый большой корабль России) — плывут, а не тонут. С другой стороны, все легкие вещи, такие как шарикоподшипники, мгновенно опускаются на дно. Не размер определяет, плавает ли что-то на воде или тонет. Так в чем же ключ?
Архимед — первый моряк
Все тела на Земле — как над водой, так и под водой — обладают удельным весом. Более 2200 лет назад Архимед заметил, что существует взаимосвязь между весом тела, погруженного в воду, и объемом вытесненной воды. Это так называемый Закон Архимеда заставляет современные корабли плыть по морям и океанам. Но тогда Архимед не думал о кораблях.
Его задачей было оценить, была ли корона Гиерона II, короля Сиракуз, сделана из чистого золота или в ней была примесь серебра. Архимед пришел к выводу, что если бы корона была сделана из чистого золота, она бы занимала меньше места, чем корона с примесью серебра того же веса — это потому, что серебро не такое плотное как золото. Сравнив объем короны, измеренный количеством вытесненной воды, с объемом золота и серебра того же веса, он смог ответить на вопрос короля. Выяснилось, что корона Гиерона II сделана не из чистого золота.
После этого события Архимед начал эксперименты, на основе которых сформулировал закон плавучести. Оказалось, что любые погруженные в воду объекты, в том числе корабли, могут плавать, если вес вытесняемой ими воды равен их собственному весу.
Почему плывут корабли?
Корабли плывут, потому что они полые и имеют правильно распределенный вес. Кусок стали, помещенный на воду, мгновенно утонет, в то время как сталь в форме чаши будет плавать на ней. Это потому, что вес стали сосредоточен на небольшом пространстве, а в форме чаши равномерно распределен.
Именно это делает все корабли похожими по форме. Глубина осадки корабля зависит от формы корпуса и его веса. При заданной загрузке корабля он вытесняет столько воды, сколько объем погруженной части. Глубина погружения каждого корабля определяется при его проектировании — инженеры, располагающие компьютерными моделями корпуса, могут определить, как изменится объём подводной части при дополнительной нагрузке или пассажирской нагрузке.
Источник
Почему корабли не тонут? Описание, фото и видео
С самого зарождения кораблестроения люди прилагают массу усилий, стараясь создать корабли, которые не тонут. Первые деревянные суда были легче воды. Но развитие науки и знание законов физики позволило строить и стальные, и даже железобетонные суда.
Железобетонные корабли строились в Северной Америке в первой половине XX века, когда во время двух мировых войн ощущался дефицит стали.
Кораблю помогают не тонуть законы физики
Плавучесть судна определяется законом Архимеда: жидкость выталкивает тело с силой, равной весу жидкости в объеме погруженной в нее части тела. Основная хитрость здесь заключается в объеме – чем больше объем корабля, тем более толстыми можно сделать его металлические борта и тем больше дополнительного груза он может взять на борт, оставаясь при этом на плаву. Так получается потому, что основной внутренний объем корабля заполнен воздухом, который в 825 раз легче воды. Именно воздух придает плавучесть кораблю.
По этому же принципу возможно погружение и всплытие подводных лодок – при погружении балластные цистерны заполняются водой, лодка теряет плавучесть и погружается. При всплытии – в них подают воздух под давлением, вытесняющий воду. По этому же принципу плавает в ванне металлический тазик – внутри него находится воздух, занимающий большую часть всего объема тазика. Если же внутренний объем тазика заполнить камнями или металлом – он утонет, потому что вес его станет слишком большим.
Инженерные решения-остойчивость корабля
На плавучесть корабля, его способность сопротивляться силам ветра и волн действует принцип рычага. Если тазик, который спокойно плавает в ванне, запустить в речку – он вскоре наберет воды и утонет, потому что его будет наклонять ветер и захлестывать волны.
малая остойчивость
С кораблем тоже может случиться нечто подобное, если у него малая остойчивость. В истории бывали случаи, когда сотни пассажиров, собравшиеся у одного борта – вызывали крен судна и его затопление. Много кораблей гибло во время штормов из-за того, что их переворачивал ветер и волны.
Остойчивость судна
Остойчивость судна – это его способность сохранять устойчивое положение в воде. Зависит она от места, где находится центр тяжести судна. Чем он ближе к поверхности – тем проще перевернуть корабль и тем меньше остойчивость.
Именно поэтому у современных кораблей самые тяжелые агрегаты – ходовые двигатели, генераторы, танки с запасами воды и топлива находятся в нижней части. Там же располагаются грузовые трюмы. Моряки знают, что на полностью загруженном судне – качка ощущается намного меньше, чем на пустом.
Для смещения центра тяжести как можно ниже, конструкторы специально утяжеляют киль с помощью свинцовых накладок. В спортивных судах утяжеленный киль вообще крепится под судном отдельно на балках и называется выносным.
На остойчивость сильно влияет и форма борта – наименьшей обладают суда с полукруглым дном, наибольшей – спортивные тримараны, имеющие два выносных корпуса-опоры по бокам. Действительно, наличие дополнительных опор в верхней части борта помогает сохранять остойчивость, мешая судну накреняться. Это знали еще в древности и прикрепляли вдоль верхней части борта лодки связки сухого камыша. А современные туристы с этой целью используют надувные баллоны, привязывая их по бортам байдарок.
Обязательные правила морехода
Чтобы избежать смещения центра тяжести, при загрузке современных кораблей используются компьютерные программы, помогающие просчитать – куда и сколько груза можно поместить, чтобы сохранить мореходные качества судна. Ответственным за правильное размещение груза является старший помощник капитана. Он командует погрузкой и в соответствии с расчетами, самые тяжелые грузы размещаются в трюмах, а более легкие – на палубе. Груз на корабле обязательно «найтовится», то есть привязывается. Это нужно, чтобы во время шторма он не перекатывался по трюмам и не изменял центр тяжести судна.
Весь корпус корабля разделен на герметичные отсеки. В нормальном состоянии перегородки между отсеками открыты. Когда корабль получает пробоину – тот отсек, где она расположена, перекрывается герметичными перегородками, чтобы вода не могла заполнить весь корпус.
Опасно во время шторма разворачивать корабль «лагом к волне», то есть боком. Слишком велика вероятность, что сильная волна перевернет корабль. Также опасна и волна в корму. Поэтому часто океанские суда во время сильных штормов начинают двигаться носом против волн, уходя с намеченного курса – это самый безопасный для корабля способ пережить непогоду. И только после окончания шторма они возвращаются на нужный курс.
Плавучесть и остойчивость судна – это основные его качества, обеспечивающие безопасность. Поэтому правила, помогающие сохранить их – обязательны к соблюдению. А конструкторские решения, способствующие их улучшению, всегда приветствуются.
Почему корабли не тонут – интересное видео
Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Источник
Почему корабль не тонет при шторме
ПОЧЕМУ НЕ ТОНУТ КОРАБЛИ?
Автор работы награжден дипломом победителя III степени
Этим летом я с мамой и папой ездил отдыхать на море, и там я видел, как на море проплывали большие корабли, танкеры. Мне стало очень интересно, почему корабли такие большие и тяжелые, но не тонут. Мне захотелось самому это понять с помощью опытов и самостоятельно найти ответ на вопрос «Почему корабли не тонут?»
Гипотеза:
1. Материал, из которого изготовлен корабль, не дает ему утонуть;
2. Корабль не тонет, потому что он имеет особую форму и строение;
3. Корабль не тонет, потому что воздух внутри него держит его на плаву;
Цель работы: понять «Почему корабли не тонут?»
Задачи работы:
Узнать, что такое «корабль», познакомиться с историей кораблей;
Рассмотреть виды первых кораблей, современных кораблей;
Узнать какую конструкцию имеет корабль, принцип работы корабля;
Понять, почему корабль не тонет;
Провести опыты, помогающие понять, почему корабль не тонет;
Предмет исследования: изучение взаимодействия жидкости и предметов, помещенных в нее.
Методыисследования:
Изучение научной литературы;
Изучение информации в интернете;
Проведение опытов, экспериментов;
Беседы со взрослыми
2. Теоретический материал
2.1 Что такое корабль?
Когда-то ученые считали, что слово «корабль» имеет исконно славянские корни «кора» и «корыто», однако эти предположения оказались неверными. Слово «корабль» имеет греческие корни. Греческое слово «καραβιον», буквально означает судно. От него, например, произошло и итальянское название судна — «каравелла».[1]
В понимании современного человека: корабль— это большое морское (либо речное) судно, которое перевозит пассажиров, грузы или служит для военных целей.
2.2 История кораблей
Наши далекие предки при передвижениях, столкнулись с проблемой путешествия по воде. Для этого они начали использовать обыкновенное дерево. Потом человеку нужно было что-то перевезти, и он связал несколько деревьев вместе. Так получился первый плот.
В каменном веке человек научился пользоваться орудием труда, и тогда при помощи камня он стал выдалбливать в дереве углубление, так получилась первая лодка. Многие народы делали лодки из шкур животных, коры деревьев, тростника, пальмовых листьев. Постепенно размеры плавательных средств увеличивались, и появился водоизмещающий корпус, который и стал основной чертой кораблей. Однако изначально такие корпусы были небольшие, но уже содержали в себе все элементы современных кораблей. Вскоре появились первые мореходные корабли. Во времена промышленной революции для строения корпуса корабля начали применять железо и сталь. Сегодня корабли строят из прочных металлических сплавов и стеклоармированных пластмасс.
Судостроение было развито в Древнем Египте, в Финикии, Древнем Китае. В средние века суда строились в Византии, в государствах Средиземноморья и Северной Европы, в Древней Руси. Чуть позже суда строили в Португалии и Испании, позднее и в Англии, в Нидерландах, Франции.[2]
2.3 Первые корабли
Первые корабли – это небольшие деревянные суда различной формы, передвигающиеся с помощью весел, появились задолго до нашей эры в Египте, на Крите, в Древней Греции и Риме.
В 5 веке до нашей эры появились корабли с несколькими рядами весел. Корабли с двумя рядами весел назывались биремами, с тремя — триремами. Экипаж такого крупного корабля мог состоять из несколько сот человек.
Рис.1 Римская галера
В 7-ом веке в Венеции был создан быстроходный вёсельно-парусный корабль — галера. Галера имела длину 40-50 метров, ширину 6 метров, один ряд весел, экипаж до 450 человек, развивала скорость 7 узлов (13 км/ч). Кроме весел галера имела две мачты с косыми парусами.[2]
Рис.2 Венецианская галера
Переход от гребного флота к парусному флоту осуществлялся вплоть до начала 18-го века.
Появление парусных кораблей, и парусного флота, дало мощный толчок к развитию кораблестроения.
Палуба парусника делалась из твердых, как камень, пород дерева; мачты возвышались над палубой на 15-25 м, т. е. имели высоту 5-8-этажного дома.
На мачтах были перекладины, на которых держались паруса. От перекладины к перекладине протягивалось множество канатов, веревочных лесенок.
В период, с 1630 по 1850 год, самым мощным военным кораблем являлся трехпалубный деревянный парусник, имевший 100 и более пушек на борту.
Команда военного корабля 18-го века состояла примерно из 850 офицеров и матросов.
Следующий этап в развитие кораблестроения начался в 19-ом веке, это строительство кораблей, имеющих корпуса из железа и двигатели. Первыми такими кораблями стали пароходы, которые очень быстро заменили парусные суда.[2]
2.4 Современные корабли
В начале XX века произошли значительные перемены в кораблестроении — на смену пароходам, широко использовавшимся в течение ста лет на всех водных транспортных путях, приходят более совершенные суда с дизельным приводом.
Современные корабли используются в различных областях человеческой деятельности: в торговле, военных действиях, перемещении людей, научных исследованиях, туризме и отдыхе, спасательных операциях, рыболовстве и даже сельском хозяйстве.
На современных пассажирских лайнерах имеются комфортабельные каюты, кинотеатры, рестораны, бассейны и игровые комнаты для детей. Большое значение на них предается мерам безопасности. В прежние времена плавание на кораблях было очень опасным. Лишь после гибели в 1912 г. в результате столкновения с айсбергом супер-лайнера «Титаник», на борту которого находились около полутора тысяч членов экипажа и пассажиров, наличие спасательных жилетов для всех людей на судне стало обязательным.[3]
Современные корабли
Рис.4 Круизный корабль
Рис.5 Парусный корабль
Рис. 6 Корабль военно-морского флота
2.5 Конструкция корабля
К какому бы виду или классу не относилось судно, ему присущи общие элементы конструкции. В первую очередь, конечно, корпус, на котором установлены надстройки различного назначения, мачты и рубки. Важным элементом всех судов являются двигатели и движители, в общем, силовые установки. Для жизнедеятельности плавательного средства имеют значение устройства, системы, электрооборудование, трубопроводы и оборудование помещений. Парусные суда оснащаются еще рангоутом и такелажем.
Носом называется передняя, кормой – задняя оконечности корпуса, его боковые поверхности – бортами. Правый борт по ходу движения моряки называют штирбортом, левый – бакбортом. Дном или днищем называется нижняя часть корабля, палубами – горизонтальные перекрытия. Трюм корабля – это самое нижнее помещение, которое находится между днищем и нижней палубой. Межпалубное пространство называется твиндеком.[3]
Рис. 7 Устройство корабля
Корпус корабля представляет собой водонепроницаемое тело обтекаемой формы, полое внутри. Корпус обеспечивает плавучесть судна и является базой или платформой, на которой монтируется оборудование или вооружение в зависимости от назначения корабля.[3]
2.6 Принцип работы корабля
Трюмная часть корабля вытесняет массу воды, равную ее собственной массе. Пытаясь вернуться на свое место, вытесненная вода толкает корабль вверх.
Установленные под углом лопасти корабельного винта, вращаясь, создают усилие, толкающее винт и соответственно корабль вперед. На некоторых современных скоростных паромах используется водоструйный движитель; морская вода засасывается в него, а затем выпускается высокоскоростной струей.
Руль, подвешенный на шарнирах на корме судна, соединяется со штурвалом или румпелем. Если рулевой отводит румпель влево, руль и корма двигаются вправо. Если необходимо сделать поворот вправо, он отводит румпель влево.
В эпоху парусных судов была разработана такая установка парусов, которая позволяла двигаться против ветра. Делая повороты в разные стороны (идя галсами), корабль продвигался вперед, даже когда не было попутного ветра.[1]
2.7 Почему корабль не тонет
Если в полости корабля попадет вода, то он конечно же затонет. Чтобы возможность затопления свести на минимум, в подводной части корабля строят перегородки. В результате получаются отсеки, в которых вода из одного не может попасть в другой. Если корабль получит пробоину, то затопится только отсек в месте пробоины. Остальные останутся заполненными воздухом и будут удерживать корабль на плаву. В любом случае корабль имеет вес. Этот вес равен весу воды, объем которой корабль «занимает» собой в море.
Как известно, корабли плавают не просто так, а перевозят различные грузы и людей. Пустой корабль весит меньше, а значит меньше будет «осаживаться» в море. Если его нагрузить, то корабль осядет в воду глубже. При чрезмерной нагрузке, корабль может вообще уйти под воду и утонуть. Поэтому на корпусе судов отмечают специальную линию (ватерлинию). Судно не должно погружаться в воду так, чтобы эта линия оказалась под водой. Иначе любая сильная волна, плеснув воду на корму, может легко затопить корабль.
С другой стороны, пустое судно не должно быть слишком легким. Иначе его подводная часть будет слишком маленькой по отношению к надводной. В таком случае волны и ветер могут опрокинуть корабль.
Корабль, загруженный по ватерлинию, вытесняет самый большой объем воды. Вес этой воды называется водоизмещением конкретного судна. Грузоподъемность судна — это разность между водоизмещением и весом пустого судна или, проще говоря, разность между загруженным кораблем, когда он имеет осадку по ватерлинию, и весом судна без груза.[3]
Практическая часть
Почему же корабли, изготовленные из железа, держаться на воде и не тонут? Я решил провести опыты и понять это (см. Приложение 1).
3.1 Опыт № 1 «Влияет ли материал, из которого сделан корабль, на его плавучесть?
Поочередно погружаем в воду предметы, сделанные из металла, дерева, пенопласта и пластмассы. Как видно, предмет из металла утонул, а из дерева, пластмассы – нет (см. Приложение 2).
Я знал, что все окружающие нас предметы и вещества состоят из крошечных, не видимых взгляду частичек – молекул. Те тела, в которых молекулы располагаются очень близко друг к другу — обладают большей плотностью и быстрее идут ко дну. А тела, в которых молекулы далеко друг от друга, обладают меньшей плотностью, поэтому остаются плавать на поверхности воды. Плотность у железа больше плотности воды, и поэтому оно утонуло. Тела, плотность которых меньше плотности воды, свободно плавают по её поверхности. Поэтому предметы из дерева, пластмассы остались плавать по поверхности. Мы знаем, что современные корабли сделаны из металла, от сюда следует вывод, что «плавучесть» корабля не зависит от материала, из которого он изготовлен.
Следовательно, гипотеза №1 не верна.
3.2 Опыт № 2 «Влияние формы на плавучесть корабля»
Я уже убедился в том, что предметы из различных материалов ведут себя в воде по-разному. Оказывается, у воды есть еще один секрет: на ее поверхности может плавать и «тонущий» материал, главное придать ему нужную форму.
Берем пластилин, делаем из него шарик и опускаем его в воду (см. Приложение 3). Пластилин затонул. Слепим из этого же кусочка пластилина кораблик и опускаем его в воду дном вниз. Наш корабль не тонет, потому что он имеет особую форму (см. Приложение 4). То же самое происходит с большими кораблями, которые не тонут, а продолжают бороздить океаны.
Гипотеза № 2 верна, корабль не тонет, потому что он имеет особую форму и строение.
Опыт № 3 «Влияние воздуха на плавучесть корабля»
Я задумался – а что ещё находится на корабле кроме команды с капитаном, пассажиров, груза и всей техники, которой он оснащён. Помимо всего перечисленного на корабле есть воздух. Из книг я узнал, что воздух намного легче воды. А ведь внутри корпуса корабля есть некоторое пространство, заполненное воздухом. Именно воздух поддерживает корабль на поверхности воды и не даёт затонуть. Я решил проверить это на опыте с шариком.
Берем два воздушных шарика, один из которых надуваем, а второй наполняем водой, и погружаем в воду. Надутый шарик не тонет, даже если надавить на него сверху рукой. А шарик, наполненный водой, погрузился под поверхность (см. Приложение 5).
Оказывается, когда — то давно древнегреческий учёный Архимед исследовал проблему плавучести тел и сформулировал закон: на всякое тело, погружённое в жидкость, действует выталкивающая сила, направленная вверх и равная весу вытесненной им жидкости, который известен сейчас как Закон Архимеда. Таким образом, в нашем опыте на шарик снизу, действовала сила Архимеда, которая выталкивала шарик на поверхность.
Гипотеза №3 верна, корабль не тонет, потому что воздух внутри него держит его на плаву.
Железные суда проектируют и строят с таким расчётом, чтобы при погружении они вытесняли огромное количество воды, вес которой равен их весу в загруженном состоянии (это называется водоизмещением корабля). В этом случае на них будет действовать выталкивающая архимедова сила соответствующей величины.
Корабль внутри имеет множество пустых, наполненных воздухом помещений и средняя его плотность значительно меньше плотности воды. Именно поэтому он держит корабль на поверхности воды и не даёт затонуть.
Рис. 8-Силы поддержания; 2-Давление воды на борт судна
Опыт №4 «Влияет ли плотность воды на силу выталкивания»
Определим зависимость величины выталкивающей силы от плотности жидкости. Поместим свежее яйцо в емкость с чистой водой. Мы видим, что яйцо утонуло (см. Приложение 6).
В другой емкость положим 3 ст. ложки соли и опустим яйцо. Яйцо в сосуде с солёной водой всплывает (см. Приложения рис 6). Мы увидели, что выталкивающая сила увеличивается с увеличением плотности воды. Следовательно, в море, где вода соленая (с большей плотностью), выталкивающая сила, действующая на корабль больше, чем в реке или озере, где вода пресная. Поэтому в море судно может нести грузы большей тяжести.
Заключение
В ходе моего исследования первая моя гипотеза не подтвердилась, вторая и третья гипотезы подтвердились. Цель работы достигнута, я понял почему не тонут корабли.
На основании проведенного исследования я сделал вывод, корабли не тонут, потому что:
1. Корабли проектируют и строят с таким расчётом, чтобы они при погружении вытесняли огромное количество воды.
2. Корабли не тонут, потому что на них действует выталкивающая (подъемная) сила, по закону Архимеда, направленная вверх и равная весу жидкости, вытесненной кораблем.
3. Корабль будет находиться на плаву до тех пор, пока его вес будет меньше или равен весу вытесненной им жидкости, что достигается, в том числе и наличием прослойки воздуха в отсеках корабля, а воздух легче воды.
Конечно, есть еще много того, что я не понимаю, например физические понятия, законы, формулы, но, думаю, в старших классах я смогу разобраться в этом вопросе подробнее.
Список источников и использованной литературы:
Я познаю мир: Корабли- М.: ООО «Издательство Астрель», 2002г.
История корабля / С. В. Сахарнов, издательство «Малыш», 1990г.
Ушаков С. З. Плавание тел, детская энциклопедия, том 3 «Числа и фигуры, вещество и энергия». – Москва: «Издательство Академии Педагогических Наук РСФСР», 1961.
Источник