Как сделать десятичные числа

Как перевести десятичную дробь в обыкновенную

Вот, казалось бы, перевод десятичной дроби в обычную — элементарная тема, но многие ученики её не понимают! Поэтому сегодня мы подробно рассмотрим сразу несколько алгоритмов, с помощью которых вы разберётесь с любыми дробями буквально за секунду.

Напомню, что существует как минимум две формы записи одной и той же дроби: обыкновенная и десятичная. Десятичные дроби — это всевозможные конструкции вида 0,75; 1,33; и даже −7,41. А вот примеры обыкновенных дробей, которые выражают те же самые числа:

Сейчас разберёмся: как от десятичной записи перейти к обычной? И самое главное: как сделать это максимально быстро?

Основной алгоритм

На самом деле существует как минимум два алгоритма. И мы сейчас рассмотрим оба. Начнём с первого — самого простого и понятного.

Чтобы перевести десятичную дробь в обыкновенную, необходимо выполнить три шага:

    Переписать исходную дробь в виде новой дроби: в числителе останется исходная десятичная дробь, а в знаменателе нужно поставить единицу. При этом знак исходного числа также помещается в числитель. Например:

  • Умножаем числитель и знаменатель полученной дроби на 10 до тех пор, пока в числителе не исчезнет запятая. Напомню: при каждом умножении на 10 запятая сдвигается вправо на один знак. Разумеется, поскольку знаменатель тоже умножается, там вместо числа 1 будут появляться 10, 100 и т.д. Примеры: Алгоритм перехода к обычным дробям
  • Наконец, сокращаем полученную дробь по стандартной схеме: делим числитель и знаменатель на те числа, которым они кратны. Например, в первом примере 0,75=75/100, при этом и 75, и 100 делятся на 25. Поэтому получаем $0,75=\frac<75><100>=\frac<3\cdot 25><4\cdot 25>=\frac<3><4>$ — вот и весь ответ.:)
  • Важное замечание по поводу отрицательных чисел. Если в исходном примере перед десятичной дробью стоит знак «минус», то и на выходе перед обыкновенной дробью тоже должен стоять «минус». Вот ещё несколько примеров:

    Примеры перехода от десятичной записи дробей к обычной

    Особое внимание хотелось бы обратить на последний пример. Как видим, в дроби 0,0025 присутствует много нулей после запятой. Из-за этого приходится аж целых четыре раза умножать числитель и знаменатель на 10. Можно ли как-то упростить алгоритм в этом случае?

    Конечно, можно. И сейчас мы рассмотрим альтернативный алгоритм — он чуть более сложен для восприятия, но после небольшой практики работает намного быстрее стандартного.

    Более быстрый способ

    В данном алгоритме также 3 шага. Чтобы получить обычную дробь из десятичной, нужно выполнить следующее:

    Вот и всё! На первый взгляд, эта схема сложнее предыдущей. Но на самом деле он и проще, и быстрее. Судите сами:

    Как видим, в дроби 0,64 после запятой стоит две цифры — 6 и 4. Поэтому $n=2$. Если убрать запятую и нули слева (в данном случае — всего один ноль), то получим число 64. Переходим ко второму шагу: $<<10>^>=<<10>^<2>>=100$, поэтому в знаменателе стоит именно сто. Ну а затем остаётся лишь сократить числитель и знаменатель.:)

    Ещё один пример:

    Здесь всё чуть сложнее. Во-первых, цифр после запятой уже 3 штуки, т.е. $n=3$, поэтому делить придётся на $<<10>^>=<<10>^<3>>=1000$. Во-вторых, если убрать из десятичной записи запятую, то мы получим вот это: 0,004 → 0004. Вспомним, что нули слева надо убрать, поэтому по факту у нас число 4. Дальше всё просто: делим, сокращаем и получаем ответ.

    Наконец, последний пример:

    Особенность этой дроби — наличие целой части. Поэтому на выходе у нас получается неправильная дробь 47/25. Можно, конечно, попытаться разделить 47 на 25 с остатком и таким образом вновь выделить целую часть. Но зачем усложнять себе жизнь, если это можно сделать ещё на этапе преобразований? Что ж, разберёмся.

    Что делать с целой частью

    На самом деле всё очень просто: если мы хотим получить правильную дробь, то необходимо убрать из неё целую часть на время преобразований, а затем, когда получим результат, вновь дописать её справа перед дробной чертой.

    Например, рассмотрим то же самое число: 1,88. Забьём на единицу (целую часть) и посмотрим на дробь 0,88. Она легко преобразуется:

    Затем вспоминаем про «утерянную» единицу и дописываем её спереди:

    Вот и всё! Ответ получился тем же самым, что и после выделения целой части в прошлый раз. Ещё парочка примеров:

    В этом и состоит прелесть математики: каким бы путём вы не пошли, если все вычисления выполнены правильно, ответ всегда будет одним и тем же.:)

    В заключение хотел бы рассмотреть ещё один приём, который многим помогает.

    Преобразования «на слух»

    Давайте задумаемся о том, что вообще такое десятичная дробь. Точнее, как мы её читаем. Например, число 0,64 — мы читаем его как «ноль целых, 64 сотых», правильно? Ну, или просто «64 сотых». Ключевое слово здесь — «сотых», т.е. число 100.

    А что насчёт 0,004? Это же «ноль целых, 4 тысячных» или просто «четыре тысячных». Так или иначе, ключевое слово — «тысячных», т.е. 1000.

    Ну и что в этом такого? А то, что именно эти числа в итоге «всплывают» в знаменателях на втором этапе алгоритма. Т.е. 0,004 — это «четыре тысячных» или «4 разделить на 1000»:

    Читайте также:  Как сделать волнистый каскад

    Попробуйте потренироваться сами — это очень просто. Главное — правильно прочесть исходную дробь. Например, 2,5 — это «2 целых, 5 десятых», поэтому

    А какое-нибудь 1,125 — это «1 целая, 125 тысячных», поэтому

    В последнем примере, конечно, кто-то возразит, мол, не всякому ученику очевидно, что 1000 делится на 125. Но здесь нужно помнить, что 1000 = 10 3 , а 10 = 2 ∙ 5, поэтому

    \[\begin& 1000=10\cdot 10\cdot 10=2\cdot 5\cdot 2\cdot 5\cdot 2\cdot 5= \\& =2\cdot 2\cdot 2\cdot 5\cdot 5\cdot 5=8\cdot 125\end\]

    Таким образом, любая степень десятки раскладывается лишь на множители 2 и 5 — именно эти множители нужно искать и в числителе, чтобы в итоге всё сократилось.

    На этом урок окончен. Переходим к более сложной обратной операции — см. «Переход от обыкновенной дроби к десятичной».

    Источник

    Десятичные дроби

    Мы уже говорили, что дроби бывают обыкновенные и десятичные. На данный момент мы немного изучили обыкновенные дроби. Мы узнали, что обыкновенные дроби бывают правильные и неправильные. Также мы узнали, что обыкновенные дроби можно сокращать, складывать, вычитать умножать и делить. И ещё мы узнали, что бывают так называемые смешанные числа, которые состоят из целой и дробной части.

    Мы ещё не до конца изучили обыкновенные дроби. Есть немало тонкостей и деталей, о которых следует поговорить, но уже сегодня мы начнём изучать десятичные дроби, поскольку обыкновенные и десятичные дроби достаточно часто приходится сочетать. То есть при решении задач приходиться работать с обоими видов дробей.

    Этот урок возможно покажется сложным и непонятным. Это вполне нормально. Такого рода уроки требуют, чтобы их именно изучали, а не просматривали поверхностно.

    Выражение величин в дробном виде

    Иногда удобно бывает показать что-либо в дробном виде. Например, одна десятая часть дециметра записывается так:

    Это выражение означает, что один дециметр был разделён на десять равных частей, и от этих десяти частей была взята одна часть. А одна часть из десяти в данном случае равна одному сантиметру:

    Рассмотрим следующий пример. Пусть требуется показать 6 см и ещё 3 мм в сантиметрах в дробном виде.

    Итак, 6 целых сантиметров у нас уже есть:

    Но осталось еще 3 миллиметра. Как показать эти 3 миллиметра, при этом в сантиметрах? На помощь приходят дроби. Один сантиметр это десять миллиметров. Три миллиметра это три части из десяти. А три части из десяти записываются как см

    Выражение см означает, что один сантиметр был разделён на десять равных частей, и от этих десяти частей взяли три части.

    В результате имеем шесть целых сантиметров и три десятых сантиметра:

    Цифра 6 показывает число целых сантиметров, а дробь — число дробных. Эта дробь читается как «шесть целых и три десятых сантиметра» .

    Дроби, в знаменателе которых присутствуют числа 10, 100, 1000 можно записывать без знаменателя. Сначала пишут цéлую часть, а потом числитель дробной части. Целая часть отделяется от числителя дробной части запятой.

    Например, запишем без знаменателя. Сначала записываем целую часть. Целая часть это 6

    Целая часть записана. Сразу же после написания целой части ставим запятую:

    И теперь записываем числитель дробной части. В смешанном числе числитель дробной части это число 3. Записываем после запятой тройку:

    Любое число, которое представляется в таком виде, называется десятичной дробью.

    Поэтому показать 6 см и ещё 3 мм в сантиметрах можно с помощью десятичной дроби:

    Выглядеть это будет следующим образом:

    На самом деле десятичные дроби это те же самые обыкновенные дроби и смешанные числа. Особенность таких дробей заключается в том, что в знаменателе их дробной части содержатся числа 10, 100, 1000 или 10000.

    Как и смешанное число, десятичная дробь имеет цéлую часть и дробную. Например, в смешанном числе целая часть это 6, а дробная часть это .

    В десятичной дроби 6,3 целая часть это число 6, а дробная часть это числитель дроби , то есть число 3.

    Бывает и так, что обыкновенные дроби в знаменателе которых числа 10, 100, 1000 даны без целой части. Например, дробь дана без целой части. Чтобы записать такую дробь как десятичную, сначала записывают 0, затем ставят запятую и записывают числитель дробной части. Дробь без знаменателя будет записана следующим образом:

    Читается как «ноль целых, пять десятых».

    Перевод смешанных чисел в десятичные дроби

    Когда мы записываем смешанные числа без знаменателя, мы тем самым перевóдим их в десятичные дроби. При переводе обыкновенных дробей в десятичные дроби нужно знать несколько моментов, о которых мы сейчас поговорим.

    После того как записана целая часть, обязательно нужно посчитать количество нулей в знаменателе дробной части, поскольку количество нулей дробной части и количество цифр после запятой в десятичной дроби должно быть одинаковым. Что это значит? Рассмотрим следующий пример: перевести смешанное число в десятичную дробь.

    Сначала записываем целую часть и ставим запятую:

    И можно бы сразу записать числитель дробной части и десятичная дробь готова, но обязательно нужно посчитать сколько нулей содержится в знаменателе дробной части.

    Итак, посчитаем количество нулей в дробной части смешанного числа . Видим, что в знаменателе дробной части один ноль. Значит в десятичной дроби после запятой будет одна цифра и это цифра будет числитель дробной части смешанного числа , то есть число 2

    Таким образом, смешанное число при переводе в десятичную дробь обращается в 3,2. Эта десятичная дробь читается так:

    «Три целых, две десятых»

    «Десятых» потому что в дробной части смешанного числа содержится число 10.

    Читайте также:  Как сделать стручки фасоли

    Пример 2. Перевести смешанное число в десятичную дробь.

    Записываем цéлую часть и ставим запятую:

    И можно бы сразу записать числитель дробной части и получить десятичную дробь 5,3 но правило говорит, что после запятой должно быть столько цифр сколько нулей в знаменателе дробной части смешанного числа . А мы видим, что в знаменателе дробной части два нуля. Значит в нашей десятичной дроби после запятой должно быть две цифры, а не одна.

    В таких случаях числитель дробной части нужно немного видоизменить: добавить ноль перед числителем, то есть перед числом 3

    Теперь можно довести дело до конца. Записываем после запятой числитель дробной части:

    Видим, что количество цифр после запятой и количество нулей в знаменателе дробной части смешанного числа одинаково.

    Десятичная дробь 5,03 читается так:

    «Пять целых, три сотых»

    «Сотых» потому что в знаменателе дробной части смешанного числа содержится число 100.

    Пример 3. Перевести смешанное число в десятичную дробь.

    Из предыдущих примеров мы узнали, что для успешного перевода смешанного числа в десятичную дробь, количество цифр в числителе дробной части и количество нулей в знаменателе дробной части должно быть одинаковым.

    Перед переводом смешанного числа в десятичную дробь, его дробную часть нужно немного видоизменить, а именно сделать так, чтобы количество цифр в числителе дробной части и количество нулей в знаменателе дробной части было одинаковым.

    В первую очередь смóтрим на количество нулей в знаменателе дробной части. Видим, что там три нуля:

    Наша задача организовать в числителе дробной части три цифры. Одна цифра у нас уже есть — это цифра 2. Осталось добавить ещё две цифры. Ими будут два нуля. Добавим их перед цифрой 2. В результате количество нулей в знаменателе и количество цифр в числителе станет одинаковым:

    Теперь можно заняться переводом этого смешанного числа в десятичную дробь. Записываем сначала цéлую часть и ставим запятую:

    и сразу записываем числитель дробной части

    Видим, что количество цифр после запятой и количество нулей в знаменателе дробной части смешанного числа одинаково.

    Десятичная дробь 3,002 читается так:

    «Три целых, две тысячных»

    «Тысячных» потому что в знаменателе дробной части смешанного числа содержится число 1000.

    Перевод обыкновенных дробей в десятичные дроби

    Обыкновенные дроби, у которых в знаменателе числа 10, 100, 1000 или 10000, тоже можно перевести в десятичные дроби. Поскольку у обыкновенной дроби целая часть отсутствует, сначала записывают 0, затем ставят запятую и записывают числитель дробной части.

    Здесь также количество нулей в знаменателе и количество цифр в числителе должно быть одинаковым. Поэтому следует быть внимательным.

    Пример 1. Перевести обыкновенную дробь в десятичную дробь.

    Целая часть отсутствует, значит сначала записываем 0 и ставим запятую:

    Теперь смóтрим на количество нулей в знаменателе. Видим, что там один ноль. И в числителе одна цифра. Значит можно спокойно продолжить десятичную дробь, записав после запятой цифру 5

    В полученной десятичной дроби 0,5 количество цифр после запятой и количество нулей в знаменателе дроби одинаково. Значит дробь переведена правильно.

    Десятичная дробь 0,5 читается так:

    «Ноль целых, пять десятых»

    Пример 2. Перевести обыкновенную дробь в десятичную дробь.

    Целая часть отсутствует. Записываем сначала 0 и стáвим запятую:

    Теперь смóтрим на количество нулей в знаменателе. Видим, что там два нуля. А в числителе только одна цифра. Чтобы сделать количество цифр и количество нулей одинаковым, добавим в числителе перед цифрой 2 один ноль. Тогда дробь примет вид . Теперь количество нулей в знаменателе и количество цифр в числителе одинаково. Значит можно продолжить десятичную дробь:

    В полученной десятичной дроби 0,02 количество цифр после запятой и количество нулей в знаменателе дроби одинаково. Значит дробь переведена правильно.

    Десятичная дробь 0,02 читается так:

    «Ноль целых, две сотых».

    Пример 3. Перевести обыкновенную дробь в десятичную дробь.

    Записываем 0 и стáвим запятую:

    Теперь посчитаем количество нулей в знаменателе дроби . Видим, что там пять нулей, а в числителе только одна цифра. Чтобы сделать количество нулей в знаменателе и количество цифр в числителе одинаковым, нужно в числителе перед цифрой 5 дописать четыре нуля:

    Теперь можно продолжить десятичную дробь. Записываем после запятой числитель дроби

    В полученной десятичной дроби 0,00005 количество цифр после запятой и количество нулей в знаменателе дроби одинаково. Значит дробь переведена правильно.

    Десятичная дробь 0,00005 читается так:

    «Ноль целых, пять стотысячных».

    Перевод неправильных дробей в десятичную дробь

    Неправильная дробь это дробь, у которой числитель больше знаменателя.

    Бывают неправильные дроби, у которых в знаменателе содержатся числа 10, 100, 1000 или 10000. Такие дроби можно переводить в десятичные. Но перед переводом в десятичную дробь, у таких дробей необходимо выделять цéлую часть.

    Пример 1. Перевести неправильную дробь в десятичную.

    Дробь является неправильной. Чтобы перевести такую дробь в десятичную, нужно в первую очередь выделить у нее цéлую часть. Вспоминаем, как выделять целую часть у неправильных дробей. Если забыли, советуем вернуться к этой теме и хорошенько изучить её.

    Итак, выделим целую часть в неправильной дроби . Напомним, что дробь означает деление — в данном случае деление числа 112 на число 10. Деление нужно выполнить с остатком:

    Посмóтрим на этот рисунок и соберём новое смешанное число, подобно детскому конструктору. Частное 11 будет целой частью, остаток 2 — числителем дробной части, делитель 10 — знаменателем дробной части:

    Мы получили смешанное число . Его и переведём в десятичную дробь. А как переводить такие числа в десятичные дроби мы уже знаем. Сначала записываем целую часть и ставим запятую:

    Читайте также:  Урок как сделать выкройку

    Теперь посчитаем количество нулей в знаменателе дробной части. Видим, что там один ноль. И в числителе дробной части одна цифра. Значит количество нулей в знаменателе дробной части и количество цифр в числителе дробной части одинаково. Это даёт нам возможность сразу записать после запятой числитель дробной части:

    Значит, неправильная дробь при переводе в десятичную обращается в 11,2

    Десятичная дробь 11,2 читается так:

    «Одиннадцать целых, две десятых».

    Пример 2. Перевести неправильную дробь в десятичную дробь.

    Это неправильная дробь, поскольку числитель больше знаменателя. Но её можно перевести в десятичную дробь, поскольку в знаменателе содержится число 100.

    В первую очередь выделим целую часть этой дроби. Для этого разделим уголком 450 на 100:

    Соберём новое смешанное число — получим . Теперь переведём его в десятичную дробь. Записываем целую часть и ставим запятую:

    Теперь посчитаем количество нулей в знаменателе дробной части и количество цифр в числителе дробной части. Видим, что количество нулей в знаменателе и количество цифр в числителе одинаково. Это даёт нам возможность сразу записать числитель дробной части после запятой:

    Значит неправильная дробь при переводе в десятичную обращается в 4,50

    При решении задач, если в конце десятичной дроби оказываются нули, их можно отбросить. Давайте и мы отбросим ноль в нашем ответе. Тогда мы получим 4,5

    Это одна из интересных особенностей десятичных дробей. Она заключается в том, что нули которые стоят в конце дроби, не придают этой дроби никакого веса. Другими словами, десятичные дроби 4,50 и 4,5 равны и между ними можно поставить знак равенства:

    Возникает вопрос «а почему так происходит?» Ведь на вид 4,50 и 4,5 разные дроби. Весь секрет кроется в основном свойстве дроби, котором мы изучали ранее. Мы попробуем доказать, почему равны десятичные дроби 4,50 и 4,5, но после изучения следующей темы, которая называется «перевод десятичной дроби в смешанное число».

    Перевод десятичной дроби в смешанное число

    Любая десятичная дробь может быть обратно переведена в смешанное число. Для этого достаточно уметь читать десятичные дроби.

    Например, переведём 6,3 в смешанное число. 6,3 это шесть целых и три десятых. Записываем сначала шесть целых:

    и рядом три десятых:

    Пример 2. Перевести десятичную дробь 3,002 в смешанное число

    3,002 это три целых и две тысячных. Записываем сначала три целых

    и рядом записываем две тысячных:

    3

    Пример 3. Перевести десятичную дробь 4,50 в смешанное число

    4,50 это четыре целых и пятьдесят сотых. Записываем четыре целых

    и рядом пятьдесят сотых:

    Кстати, давайте вспомним последний пример из предыдущей темы. Мы сказали, что десятичные дроби 4,50 и 4,5 равны. Также мы сказали, что ноль можно отбросить. Докажем, что десятичные 4,50 и 4,5 равны. Для этого переведем обе десятичные дроби в смешанные числа.

    После перевода в смешанное число десятичная дробь 4,50 обращается в , а десятичная дробь 4,5 обращается в

    Имеем два смешанных числа и . Переведём эти смешанные числа в неправильные дроби:

    Теперь имеем две дроби и . Теперь вспоминаем основное свойство дроби, которое говорит о том, что при умножении (или делении) числителя и знаменателя дроби на одно и то же число, значение дроби не меняется.

    Давайте разделим числитель и знаменатель первой дроби на число 10

    Получили , а это есть вторая дробь. Значит и равны между собой и равны одному и тому же значению:

    =

    Попробуйте на калькуляторе разделить сначала 450 на 100 , а затем 45 на 10 . Забавная штука получится.

    Перевод десятичной дроби в обыкновенную дробь

    Любая десятичная дробь может быть обратно переведена в обыкновенную дробь. Для этого опять же достаточно уметь читать десятичные дроби. Например, переведём 0,3 в обыкновенную дробь. 0,3 это ноль целых и три десятых. Записываем сначала ноль целых:

    и рядом три десятых 0 . Ноль по традиции не записывают, поэтому окончательный ответ будет не 0, а просто .

    Пример 2. Перевести десятичную дробь 0,02 в обыкновенную дробь.

    0,02 это ноль целых и две сотых. Ноль не записываем, поэтому сразу записываем две сотых

    Пример 3. Перевести 0,00005 в обыкновенную дробь

    0,00005 это ноль целых и пять сто тысячных. Ноль не записываем, поэтому сразу записываем пять сто тысячных

    Пример 4. Перевести 3,5 в обыкновенную дробь

    Сначала переведём данную десятичную дробь в смешанное число:

    Теперь смешанное число переведём в неправильную (обыкновенную) дробь:

    Пример 5. Перевести 1,25 в обыкновенную дробь

    Сначала переведём данную десятичную дробь в смешанное число:

    Теперь смешанное число переведём в неправильную (обыкновенную) дробь:

    Понравился урок?
    Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

    Возникло желание поддержать проект?
    Используй кнопку ниже

    37 thoughts on “Десятичные дроби”

    все круто, понятно и доступно.
    спасибо. долгий путь до высшей математики предстоит)

    Спасибо за сайт! Всё очень понятно. Не понимал что такое дробь уже с пятого класса (щя 2 курс колледжа), прочитав на сайте всё понял, спасибо вам.

    большое спасибо админ все шикарно !

    Огромное спаасибо! Просто, интересно, и очень нужно! Успехов и радости в жизни!

    Я не понимаю как перевести обыкновенные дробь в десятичную с некруглым знаменателем

    А что значит десятичная дробь с некруглым знаменателем? У десятичной дроби всегда круглый знаменатель — 10, 100, 1000. Чтобы перевести некруглый знаменатель в десятичный, нужно найти НОК с этим круглым числом. И множить…

    Источник

    Поделиться с друзьями
    Ответ и точка